
Technical University of Denmark

02267: Software-development of Web-services
DTUPay

Jeff Gyldenbrand - Student no.: s202790
Christian Bruun Nielsen - Student no.: s153867

Ergys Kajo - Student no.: s181412
Daniil Provornii - Student no.: s192678
Antoine Sébert - Student no.: s193508

Hussain Tariq Awana - Student no.: s181434

January 19, 2021

Contents

DTUPay - Description and Scope 2

Architecture 3
General diagram . 3
End to End Test System . 3
Payment Microservice . 4
Token Microservice . 5
Account Microservice . 5

Short description of the team work 6

Description of the YAML-files 6
Users.yml . 6
Pay.yml . 6
Token.yml . 7

Repository 8

Contribution Table 8

1

1 DTUPay - Description and Scope

The goal of the exam project for 02267:Software-development of Web-services is to design
and implement a web application as a collection of microservices. The suggested name
for the application is DTUPay and, according to the exam description, it has a similar
functionality to the backend of a widely spread MobilePay app from Danske Bank. In
order to make DTUPay work in the same way, several micro-services were implemented,
while each of them focuses on a specific functionality of DTUPay.

Much like MobilePay, DTUPay has to implement easy transfers of money between two
users. The main scenario is defined to be a transfer from a customer to the merchant,
while the bank assistance have been completed outside of the system and is out of the
implementation scope. Therefore DTUPay needs to focus only on the transfer of money
between two accounts of registered users. Three micro-services have been outlined for
implementation: AccountService, PaymentService and TokenService. Moreover there is
an end-to-end testing system designed to simulate the client side scenarios (both for the
customer and the merchant), where the main usage steps are performed.

In order to describe each microservice independently, there are specifications presented as
follows:

• AccountService is delegated to handle the account management for users. This
entails registration and storage of the application users.

• TokenService manages the allocation of tokens for customers. The tokens are used
to validate the customer and keep its identity anonymous in the payment service
while a transaction occurs. There are some rules in regards to how many tokens an
account can have allocated at a time, with six being the maximum amount of unused
tokens.

• PaymentService is tasked with handling the transfer of money between accounts.
It is also the only entity to diferentiate between customer and merchant in its business
logic.

• End-to-end Test, referenced also as ClientApps runs the main user scenarios and
verifies the output. Conceptually it covers the interface for customer (called Cus-
tomerAPI) and merchant (MerchantAPI) to interact with the business logic or i.e.
connection to REST adapters on the DTUPay side. Therefore this system verifies
whether the users are correctly performing the requests they can access.

To start with the project, the team discussed the resource triangle. There are two parame-
ters which are fixed (time and quality) but functionality was variable. One can control the
functionality by sorting out the order of the user stories in the project. Team progressed
with the use of Agile Software Development, and prioritizing the user stories, which satisfy
the requirements with the highest value for users.

2

2 Architecture

2.1 General diagram

The general diagram below is an illustration of final implemented system. There is shown
the transformation of one monolithic to different micro-services like:

• Payment Service

• Account Service

• Token Service

Figure 1: DTU Pay Diagram

2.2 End to End Test System

The merchant and customer applications are simulated via end to end test system. The
system is able to create valid HTTP requests to a specific service adapter in DTU Pay
infrastructure.

Figure 2: End to end class diagram

3

Figure 3: End to end class diagram

Figure 4: Class diagram

2.3 Payment Microservice

In this microservice, the merchant initiates a payment from the customer. Then the pay-
ment service check for the validation of the token provided by the customer and if it is
valid the payment will be successful.

Figure 5: Payments

4

2.4 Token Microservice

Token is an object used by the customer as the proof of transactions in the app. A customer
will request for a token or tokens up to maximum limit(5) and use the token for payment
transaction. The token are given to merchant to make payment and who will processed
the payment to DTUPay then it will be validate and perform the transaction. The token
is composed of a UUID (universal unique identifier) and a timestamp.

Figure 6: Class diagram of token service

Figure 7: Token

2.5 Account Microservice

In this microservice there are stored generic information about the user profile in the
DTUPay database.

Figure 8: Class diagram for account databasehandler

5

Figure 9: Account

Figure 10: Accounts

3 Short description of the team work

Teamwork in the group was carried out in different places such as Microsoft Teams, Zoom,
and Discord. Every day, started with a team meeting at 9 am and followed by a team
meeting at 4 pm. During this time, everyone started to do individual tasks first, so that
they can solve problem scenario and helped each other. To resolve team’s issues and per-
sonal problems were discussed the with TA’s and Hubert via Zoom meetings.
For the final project, the tasks were divided into different sub teams. Like the first week
team started with a team meeting at 9 am where sub teams specified and were given sepa-
rated daily tasks and a follow up meeting was held at 5 pm where each sub teams provided
an overview of the work that the did during the day and worked together on unsolved tasks.

4 Description of the YAML-files

The REST-interfaces are formulated as swagger YAML-files1 to provide a good overview,
and to do some quick and dirty testing of the REST-endpoints. The files are uploaded as
separate files.

4.1 Users.yml

The default port for this service is 8083.

Endpoint Method Parameters Produces / Consumes
/users/ POST JSON plain text
/users?name={name} GET {name} users name JSON

4.2 Pay.yml

The default port for this service is 8081.
1https://swagger.io

6

Endpoint Method Parameters Consumes
/pay/ POST JSON plain text

4.3 Token.yml

The default port for this service is 8082.

Endpoint Method Parameters Produces
/token GET null plain text
/token/{id} GET {id} customer ID plain text
/token/request/{id}?amount={n} GET {id} customer ID, {n} number JSON

7

5 Repository

The source code is present in GitLab repository at URL:

https://gitlab.com/02267-group-6/dtupay.git

6 Contribution Table

Part Team member
Payment Service Jeff, Christian
Account Service Jeff, Daniil, Christian
Token Service Antoine
Database Overlay Jeff
End-to-end tests Daniil, Hussain, Ergys
Docker and scripts Antoine, Daniil
Jenkins setup Antoine
Description and Scope Christian, Daniil
Architecture Ergys, Daniil, Hussain
Short description of the team work Ergys, Hussain
Users guide Daniil
Description of the YAML-files Jeff, token: Antoine
Installation guide Jeff, tests: Antoine

8

